\(\int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx\) [287]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 270 \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=-\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {4 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac {2 a^2 e^2 \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {2 a^2 e^2 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {7 a^2 e^2 \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{3 d}+\frac {5 a^2 e^2 \sqrt {e \csc (c+d x)} \tan (c+d x)}{3 d} \]

[Out]

-2/3*a^2*e^2*cot(d*x+c)*(e*csc(d*x+c))^(1/2)/d-4/3*a^2*e^2*csc(d*x+c)*(e*csc(d*x+c))^(1/2)/d-2/3*a^2*e^2*csc(d
*x+c)*sec(d*x+c)*(e*csc(d*x+c))^(1/2)/d+2*a^2*e^2*arctan(sin(d*x+c)^(1/2))*(e*csc(d*x+c))^(1/2)*sin(d*x+c)^(1/
2)/d+2*a^2*e^2*arctanh(sin(d*x+c)^(1/2))*(e*csc(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/d-7/3*a^2*e^2*(sin(1/2*c+1/4*Pi
+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*csc(d*x+c))^(1/2)
*sin(d*x+c)^(1/2)/d+5/3*a^2*e^2*(e*csc(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3963, 3957, 2952, 2716, 2720, 2644, 331, 335, 218, 212, 209, 2650, 2651} \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=\frac {2 a^2 e^2 \sqrt {\sin (c+d x)} \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)}}{d}+\frac {2 a^2 e^2 \sqrt {\sin (c+d x)} \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)}}{d}-\frac {4 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}+\frac {5 a^2 e^2 \tan (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sec (c+d x) \sqrt {e \csc (c+d x)}}{3 d}+\frac {7 a^2 e^2 \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right ) \sqrt {e \csc (c+d x)}}{3 d} \]

[In]

Int[(e*Csc[c + d*x])^(5/2)*(a + a*Sec[c + d*x])^2,x]

[Out]

(-2*a^2*e^2*Cot[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*d) - (4*a^2*e^2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*d) - (
2*a^2*e^2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]]*Sec[c + d*x])/(3*d) + (2*a^2*e^2*ArcTan[Sqrt[Sin[c + d*x]]]*Sqrt[e
*Csc[c + d*x]]*Sqrt[Sin[c + d*x]])/d + (2*a^2*e^2*ArcTanh[Sqrt[Sin[c + d*x]]]*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c
+ d*x]])/d + (7*a^2*e^2*Sqrt[e*Csc[c + d*x]]*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*d) + (5*a
^2*e^2*Sqrt[e*Csc[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2650

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*Cos[e + f*
x])^(n + 1)*((a*Sin[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Cos[e + f*
x])^n*(a*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2651

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*Sin[e +
f*x])^(n + 1))*((a*Cos[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Sin[e +
 f*x])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3963

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \left (e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^2}{\sin ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \left (e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {(-a-a \cos (c+d x))^2 \sec ^2(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \left (e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \left (\frac {a^2}{\sin ^{\frac {5}{2}}(c+d x)}+\frac {2 a^2 \sec (c+d x)}{\sin ^{\frac {5}{2}}(c+d x)}+\frac {a^2 \sec ^2(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)}\right ) \, dx \\ & = \left (a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sin ^{\frac {5}{2}}(c+d x)} \, dx+\left (a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\sec ^2(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)} \, dx+\left (2 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sin ^{\frac {5}{2}}(c+d x)} \, dx \\ & = -\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac {1}{3} \left (a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx+\frac {1}{3} \left (5 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\sec ^2(c+d x)}{\sqrt {\sin (c+d x)}} \, dx+\frac {\left (2 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{x^{5/2} \left (1-x^2\right )} \, dx,x,\sin (c+d x)\right )}{d} \\ & = -\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {4 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac {2 a^2 e^2 \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{3 d}+\frac {5 a^2 e^2 \sqrt {e \csc (c+d x)} \tan (c+d x)}{3 d}+\frac {1}{6} \left (5 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx+\frac {\left (2 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-x^2\right )} \, dx,x,\sin (c+d x)\right )}{d} \\ & = -\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {4 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac {7 a^2 e^2 \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{3 d}+\frac {5 a^2 e^2 \sqrt {e \csc (c+d x)} \tan (c+d x)}{3 d}+\frac {\left (4 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d} \\ & = -\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {4 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac {7 a^2 e^2 \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{3 d}+\frac {5 a^2 e^2 \sqrt {e \csc (c+d x)} \tan (c+d x)}{3 d}+\frac {\left (2 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d}+\frac {\left (2 a^2 e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d} \\ & = -\frac {2 a^2 e^2 \cot (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {4 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)}}{3 d}-\frac {2 a^2 e^2 \csc (c+d x) \sqrt {e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac {2 a^2 e^2 \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {2 a^2 e^2 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {7 a^2 e^2 \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{3 d}+\frac {5 a^2 e^2 \sqrt {e \csc (c+d x)} \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 13.27 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.72 \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=-\frac {a^2 e^2 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {e \csc (c+d x)} \left (-7+6 \arctan \left (\sqrt {\csc (c+d x)}\right ) \sqrt {\cos ^2(c+d x)} \sqrt {\csc (c+d x)}-6 \text {arctanh}\left (\sqrt {\csc (c+d x)}\right ) \sqrt {\cos ^2(c+d x)} \sqrt {\csc (c+d x)}+4 \csc ^2(c+d x)+4 \sqrt {\cos ^2(c+d x)} \csc ^2(c+d x)+7 \sqrt {-\cot ^2(c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\csc ^2(c+d x)\right )\right ) \sec ^4\left (\frac {1}{2} \csc ^{-1}(\csc (c+d x))\right ) \tan (c+d x)}{3 d} \]

[In]

Integrate[(e*Csc[c + d*x])^(5/2)*(a + a*Sec[c + d*x])^2,x]

[Out]

-1/3*(a^2*e^2*Cos[(c + d*x)/2]^4*Sqrt[e*Csc[c + d*x]]*(-7 + 6*ArcTan[Sqrt[Csc[c + d*x]]]*Sqrt[Cos[c + d*x]^2]*
Sqrt[Csc[c + d*x]] - 6*ArcTanh[Sqrt[Csc[c + d*x]]]*Sqrt[Cos[c + d*x]^2]*Sqrt[Csc[c + d*x]] + 4*Csc[c + d*x]^2
+ 4*Sqrt[Cos[c + d*x]^2]*Csc[c + d*x]^2 + 7*Sqrt[-Cot[c + d*x]^2]*Hypergeometric2F1[1/4, 1/2, 5/4, Csc[c + d*x
]^2])*Sec[ArcCsc[Csc[c + d*x]]/2]^4*Tan[c + d*x])/d

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 11.70 (sec) , antiderivative size = 607, normalized size of antiderivative = 2.25

method result size
default \(\frac {a^{2} e^{2} \sqrt {2}\, \left (6 i \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \operatorname {EllipticPi}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+6 i \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \operatorname {EllipticPi}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-5 i \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right )+6 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \operatorname {EllipticPi}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-6 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \operatorname {EllipticPi}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-7 \sqrt {2}\, \cos \left (d x +c \right )+3 \sqrt {2}\right ) \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \csc \left (d x +c \right )}\, \sec \left (d x +c \right ) \csc \left (d x +c \right )}{6 d}\) \(607\)
parts \(\text {Expression too large to display}\) \(1052\)

[In]

int((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/6*a^2*e^2/d*2^(1/2)*(6*I*sin(d*x+c)*cos(d*x+c)*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*
x+c)))^(1/2)*(I*(-cot(d*x+c)+csc(d*x+c)))^(1/2)*EllipticPi((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2+1/2*I,1/2*
2^(1/2))+6*I*sin(d*x+c)*cos(d*x+c)*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(
I*(-cot(d*x+c)+csc(d*x+c)))^(1/2)*EllipticPi((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2-1/2*I,1/2*2^(1/2))-5*I*s
in(d*x+c)*cos(d*x+c)*(-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(I*(-cot(d*x+c)
+csc(d*x+c)))^(1/2)*EllipticF((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2*2^(1/2))+6*cos(d*x+c)*sin(d*x+c)*(-I*(I
-cot(d*x+c)+csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(I*(-cot(d*x+c)+csc(d*x+c)))^(1/2)*Ellipti
cPi((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2+1/2*I,1/2*2^(1/2))-6*cos(d*x+c)*sin(d*x+c)*(-I*(I-cot(d*x+c)+csc(
d*x+c)))^(1/2)*(-I*(I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(I*(-cot(d*x+c)+csc(d*x+c)))^(1/2)*EllipticPi((-I*(I-cot(d
*x+c)+csc(d*x+c)))^(1/2),1/2-1/2*I,1/2*2^(1/2))-7*2^(1/2)*cos(d*x+c)+3*2^(1/2))*(cos(d*x+c)+1)*(e*csc(d*x+c))^
(1/2)*sec(d*x+c)*csc(d*x+c)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.20 (sec) , antiderivative size = 806, normalized size of antiderivative = 2.99 \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=\text {Too large to display} \]

[In]

integrate((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/12*(6*a^2*sqrt(-e)*e^2*arctan(-1/4*(cos(d*x + c)^2 - 6*sin(d*x + c) - 2)*sqrt(-e)*sqrt(e/sin(d*x + c))/(e*
sin(d*x + c) + e))*cos(d*x + c)*sin(d*x + c) - 3*a^2*sqrt(-e)*e^2*cos(d*x + c)*log((e*cos(d*x + c)^4 - 72*e*co
s(d*x + c)^2 + 8*(cos(d*x + c)^4 - 9*cos(d*x + c)^2 + (7*cos(d*x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(-e)*sqrt(e
/sin(d*x + c)) + 28*(e*cos(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 - 4*(cos(
d*x + c)^2 - 2)*sin(d*x + c) + 8))*sin(d*x + c) + 14*I*a^2*sqrt(2*I*e)*e^2*cos(d*x + c)*sin(d*x + c)*weierstra
ssPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) - 14*I*a^2*sqrt(-2*I*e)*e^2*cos(d*x + c)*sin(d*x + c)*weierstr
assPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c)) + 4*(7*a^2*e^2*cos(d*x + c)^2 + 4*a^2*e^2*cos(d*x + c) - 3*a^
2*e^2)*sqrt(e/sin(d*x + c)))/(d*cos(d*x + c)*sin(d*x + c)), -1/12*(6*a^2*e^(5/2)*arctan(1/4*(cos(d*x + c)^2 +
6*sin(d*x + c) - 2)*sqrt(e)*sqrt(e/sin(d*x + c))/(e*sin(d*x + c) - e))*cos(d*x + c)*sin(d*x + c) - 3*a^2*e^(5/
2)*cos(d*x + c)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2 + 8*(cos(d*x + c)^4 - 9*cos(d*x + c)^2 - (7*cos(d*
x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(e)*sqrt(e/sin(d*x + c)) - 28*(e*cos(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e
)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8))*sin(d*x + c) + 14*I*a^2*sqrt(
2*I*e)*e^2*cos(d*x + c)*sin(d*x + c)*weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) - 14*I*a^2*sqrt(
-2*I*e)*e^2*cos(d*x + c)*sin(d*x + c)*weierstrassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c)) + 4*(7*a^2*e^2*
cos(d*x + c)^2 + 4*a^2*e^2*cos(d*x + c) - 3*a^2*e^2)*sqrt(e/sin(d*x + c)))/(d*cos(d*x + c)*sin(d*x + c))]

Sympy [F(-1)]

Timed out. \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate((e*csc(d*x+c))**(5/2)*(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=\int { \left (e \csc \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*csc(d*x + c))^(5/2)*(a*sec(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int((a + a/cos(c + d*x))^2*(e/sin(c + d*x))^(5/2),x)

[Out]

int((a + a/cos(c + d*x))^2*(e/sin(c + d*x))^(5/2), x)